Advertisement

Deakin University scientists have manufactured a revolutionary material that can clean up oil spills, which could save the earth from potential future disasters such as any repeat of the 2010 Gulf Coast BP disaster that wreaked environmental havoc and cost a reported $40 billion.

The major breakthrough material, which literally absorbs the oil like a sponge, is the result of support from the Australian Research Council and is now ready to be trialed by industry after two years of refinement in the laboratory at Deakin’s Institute for Frontier Materials (IFM).

Alfred Deakin Professor Ying (Ian) Chen, the lead author on a paper which outlines the team’s breakthrough in today’s edition of Nature Communications, said the material was the most exciting advancement in oil spill clean-up technology in decades.

“Oil spills are a global problem and wreak havoc on our aquatic ecosystems, not to mention cost billions of dollars in damage,” said Chen. “Everyone remembers the Gulf Coast disaster, but here in Australia they are a regular problem, and not just in our waters. Oil spills from trucks and other vehicles can close freeways for an entire day, again amounting to large economic losses.

“In 2013 we developed the first stage of the material, but it was simply a powder. This powder had absorption capabilities, but you cannot simply throw powder onto oil – you need to be able to bind that powder into a sponge so that we can soak the oil up, and also separate it from water.”

Weiwei Lei, IFM scientist and lead author on the paper, said turning the powder into a sponge was a big challenge.

“The ground-breaking material is called a boron nitride nanosheet, which is made up of flakes which are just several nanometers in thickness with tiny holes which can increase its surface area per gram to effectively the size of 5.5 tennis courts,” said Lei.

The research team, which included scientists from Drexel University and Missouri University of Science and Technology, started with boron nitride powder known as “white graphite” and broke it into atomically thin sheets that were used to make a sponge.

“The pores in the nanosheets provide the surface area to absorb oils and organic solvents up to 33 times its own weight,” said Lei.

Yury Gogotsi from Drexel University said boron nitride nanosheets did not burn, could withstand flame, and be used in flexible and transparent electrical and heat insulation, as well as many other applications.

Vadym Mochalin from Missouri University of Science and Technology said the mechanochemical technique developed meant it was possible to produce high-concentration stable aqueous colloidal solutions of boron nitride sheets, which could then be transformed into the ultralight porous aerogels and membranes for oil clean-up.

“The use of computational modeling helped us to understand the intimate details of this novel mechanochemical exfoliation process. It is a nice illustration of the power, which combined experimental plus modeling approach offers researchers nowadays,” said Mochalin.

The research team is now ready to have their “sponge” trialed by industry. The nanotechnology team at IFM has been working on boron nitride nanomaterials for two decades and is an internationally recognized leader in boron nitride nanotubes and nanosheets.

Advertisement
Advertisement