Molecular Mixing Creates Super Stable Glass

  • <<
  • >>

580160.jpg

 

Researchers at Chalmers University of Technology, Sweden, have succeeded in creating a new type of super-stable, durable glass with potential applications ranging from medicines, advanced digital screens, and solar cell technology. The study shows how mixing multiple molecules—up to eight at a time—can result in a material that performs as well as the best currently known glass formers.

A glass, also known as an amorphous solid’ is a material that does not have a long-range ordered structure—it does not form a crystal. Crystalline materials on the other hand are those with a highly ordered and repeating pattern. The fact that a glass does not contain crystals is what makes it useful.

The materials we commonly call glass in every day life are mostly silicon dioxide-based, but glass can be formed from many different materials. Researchers are always interested in finding new ways to encourage different materials to form this amorphous state, which can potentially lead to the development of new types of glass with improved properties and new applications. The new study, published in Science Advances, represents an important step forward in that search. 

“Now, we have suddenly opened up the potential to create new and better glassy materials, by simply mixing many different molecules. Those working with organic molecules know that using mixtures of two or three different molecules can help to form a glass, but few might have expected that the addition of more molecules, and this many, would achieve such superior results," says Christian Müller, professor of chemistry and chemical engineering at Chalmers University, who led the research team behind the study.   

A glass is formed when a liquid is cooled down without undergoing crystallisation, a process called vitrification. The use of mixtures of two or three molecules to encourage glass formation is a well-established concept. However, the impact of mixing a multitude of molecules on the ability to form a glass has received little attention.

The researchers experimented with a mixture of up to eight different perylene molecules which, individually, have a high fragility—a property related to how easy it is for a material to form a glass. But mixing the many molecules together resulted in a substantial decrease in fragility, and a very strong glass former with ultralow fragility was formed.

“The fragility of the glass we created in the study is very low, representing the best glass-forming ability that has been measured not only for any organic material but also polymers and inorganic materials such as bulk metallic glasses. The results are even superior to the glass forming ability of ordinary window glass, one of the best glass formers that we know of,” says lead author of the study, Sandra Hultmark, a doctoral student at the university.

Important applications for more stable organic glasses are display technologies include OLED screens and renewable energy technologies such as organic solar cells.

“OLEDs are constructed with glassy layers of light-emitting organic molecules. If these were more stable it may improve the durability of an OLED and ultimately the display,” says Hultmark.

Another application that may benefit from more stable glasses are pharmaceuticals. Amorphous drugs dissolve more quickly, which aids rapid uptake of the active ingredient upon ingestion. Hence, many pharmaceuticals make use of glass-forming drug formations. For pharmaceuticals it is vital that the glassy material does not crystallise over time. The more stable the glassy drug, the longer the shelf life of the medicine.

“With more stable glasses or new glass forming materials, we could extend the lifespan of a large number of products, offering savings in terms of both resources and economy,” concludes Müller.

Republished courtesy of Chalmers University of Technology. Photo: The illustration shows the eight different perylene molecules that were investigated in the study. Credit: Yen Strandqvist/Chalmers University of Technology

 

Subscribe to our e-Newsletters
Stay up to date with the latest news, articles, and products for the lab. Plus, get special offers from Laboratory Equipment – all delivered right to your inbox! Sign up now!