NMR Method Can Assign the Molecular Weight of Compounds

  • <<
  • >>

577756.jpg

 

New world-first research has streamlined the process of identifying the structure and molecular weight of compounds, which could have positive implications for scientists working in the fields of drug discovery, pollution analysis, food security and more. 

Published in Royal Society of Chemistry’s flagship journal Chemical Science, the researchers at Griffith University developed a novel nuclear magnetic resonance-based (NMR) method to assign the molecular weight of compounds in mixtures which is a key asset for fields where individual components in complex mixtures need to be characterised. 

The research, led by Anthony Carroll, Guy Kleks, Darren Holland and Joshua Porter, is a breakthrough for scientists working on organic molecules. 

“Currently you need two orthogonal techniques, mass spectrometry and NMR spectroscopy, to work out the molecular structure of a compound,” Carroll said. “We’ve now condensed that into only needing one technique to work out the structure of the molecule.” 

The use of NMR allows scientists to look at the unique fingerprint of a compoundIt is the leading method used to identify the molecular structure of an unknown molecule 

But if you don’t know the compounds molecular weight, then using NMR techniques gets you a certain distance towards identifying what the structure of a molecule is but doesn’t get you all the way. Up until now this molecular weight was determined using mass spectrometry,” Carroll said. 

Carroll and his team have now developed an NMR method that can predict the molecular weight of the compound. This all-in-one method now means that the molecular structure can be confirmed more quickly so that the compound can be used for further developments 

“What we’ve developed is actually a quick diagnostic tool that can help a whole range of areas including health and the environment,” Carroll said.  “Previously, it was like trying to find a needle in a haystack where one molecule out of a complex mixture was responsible for the effect that we see in, for example, cancer cells. That process generally requires us to do a whole lot of separation of molecules, which means a lot of time involved in doing purification and identification.  Every molecule has its own molecular weight. If you don’t know what that is, then then it’s difficult to know what that compound is.  What we’ve developed is a technique where we can look directly at this complex mixture and identify the individual molecules within it.” 

Carroll said he hopes this world-first diagnostic method could become the adopted approach in the analysis of complex mixtures.  

Republished courtesy of Griffith University. 

 

Subscribe to our e-Newsletters
Stay up to date with the latest news, articles, and products for the lab. Plus, get special offers from Laboratory Equipment – all delivered right to your inbox! Sign up now!