Advertisement
News
Advertisement

Ancient Teeth Are Record of Disease Evolution

Tue, 02/19/2013 - 7:00am
Univ. of Adelaide

Teeth of late Iron Age/Roman woman showing large dental calculus deposit, from Cambridge area. Image: Alan Cooper, Univ. of AdelaideDNA preserved in calcified bacteria on the teeth of ancient human skeletons has shed light on the health consequences of the evolving diet and behavior from the Stone Age to the modern day.

The ancient genetic record reveals the negative changes in oral bacteria brought about by the dietary shifts as humans became farmers, and later with the introduction of food manufacturing in the Industrial Revolution.

An international team, led by the Univ. of Adelaide’s Centre for Ancient DNA (ACAD) where the research was performed, has published the results in Nature Genetics. Other team members include the Department of Archaeology at the Univ. of Aberdeen and the Wellcome Trust Sanger Institute in Cambridge.

“This is the first record of how our evolution over the last 7,500 years has impacted the bacteria we carry with us, and the important health consequences,” says study leader Prof. Alan Cooper, ACAD Director. “Oral bacteria in modern man are markedly less diverse than historic populations and this is thought to contribute to chronic oral and other disease in post-industrial lifestyles.”

The researchers extracted DNA from tartar (calcified dental plaque) from 34 prehistoric northern European human skeletons, and traced changes in the nature of oral bacteria from the last hunter-gatherers, through the first farmers to the Bronze Age and Medieval times.

“Dental plaque represents the only easily accessible source of preserved human bacteria,” says lead author Christina Adler, who conducted the research while a PhD student at the Univ. of Adelaide, now at the Univ. of Sydney. “Genetic analysis of plaque can create a powerful new record of dietary impacts, health changes and oral pathogen genomic evolution, deep into the past.”

Cooper says, “The composition of oral bacteria changed markedly with the introduction of farming, and again around 150 years ago. With the introduction of processed sugar and flour in the Industrial Revolution, we can see a dramatically decreased diversity in our oral bacteria, allowing domination by caries-causing strains. The modern mouth basically exists in a permanent disease state.”

Cooper has been working on the project with archaeologist and co-leader Prof. Keith Dobney, now at the Univ. of Aberdeen, for the past 17 years. Dobney says, “I had shown tartar deposits commonly found on ancient teeth were dense masses of solid calcified bacteria and food, but couldn’t identify the species of bacteria. Ancient DNA was the obvious answer.”

However, the team was not able to sufficiently control background levels of bacterial contamination until 2007 when ACAD’s ultra-clean laboratories and strict decontamination and authentication protocols became available. The research team is now expanding its studies through time, and around the world, including other species such as Neandertals.

Advertisement

Share this Story

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading